Physics 302K Formula Sheet

Ch.1: $\sin =$ opposite/hypotenuse, $\cos =$ adjacent/hypotenuse, $\tan =$ opposite/adjacent

Ch.2: one dimensional motion

velocity $\mathrm{v}=\frac{\Delta x}{\Delta t}$, acceleration $\mathrm{a}=\frac{\Delta v}{\Delta t}$
kinematic equation $1 \rightarrow \mathrm{v}=\mathrm{v}_{0}+$ at
kinematic equation $2 \rightarrow \mathrm{v}^{2}=\mathrm{v}_{0}^{2}+2 \mathrm{a} \Delta \mathrm{x}$
kinematic equation $3 \rightarrow \Delta \mathrm{x}=\mathrm{v}_{0} \mathrm{t}+\frac{1}{2} \mathrm{at}^{2}$

Ch.3: projectile motion

kinematic equation $1 \rightarrow \Delta \mathrm{x}=\mathrm{v}_{x 0} \mathrm{t}$
kinematic equation $2 \rightarrow \mathrm{v}_{y}=\mathrm{v}_{y 0}$-gt
kinematic equation $3 \rightarrow \mathrm{v}_{y}^{2}=\mathrm{v}_{y 0}^{2}-2 \mathrm{~g} \Delta \mathrm{y}$
kinematic equation $4 \rightarrow \Delta y=v_{y 0} t-\frac{1}{2} \mathrm{gt}^{2}$

Ch.4: laws of motion

Force $\mathrm{F}=\mathrm{ma}$, Weight $\mathrm{W}=\mathrm{mg}$ equilibrium conditions $\rightarrow \Sigma \mathrm{F}_{x}=0, \Sigma \mathrm{~F}_{y}=0$
non-equilibrium conditions $\rightarrow \Sigma \mathrm{F}_{x}=\mathrm{ma}_{x}, \Sigma \mathrm{~F}_{y}=\mathrm{ma}_{y}$ static friction force $\mathrm{f}_{s} \leq \mu_{s} \mathrm{n}$, kinetic friction force $\mathrm{f}_{k}=\mu_{k} \mathrm{n}$

Ch.5: work and energy

work: $\mathrm{W}=\mathrm{F} \cos \theta \Delta \mathrm{x}$, work $\theta=0$: $\mathrm{W}=\mathrm{F} \Delta \mathrm{x}$
potential energy: $\mathrm{PE}=\mathrm{mgy}$
elastic potential energy stored in a spring: $\mathrm{PE}_{s}=\frac{1}{2} \mathrm{kx}^{2}$
kinetic energy: $\mathrm{KE}=\frac{1}{2} \mathrm{mv}^{2}$
work energy theorem: $\mathrm{W}_{\text {net }}=\mathrm{KE}_{f}-\mathrm{KE}_{i}$
energy conservation: $\mathrm{KE}_{i}+\mathrm{PE}_{i}=\mathrm{KE}_{f}+\mathrm{PE}_{f}$
non-conservative work: $\mathrm{W}_{n c}=\left(\mathrm{KE}_{f}+\mathrm{PE}_{f}\right)-\left(\mathrm{KE}_{i}+\mathrm{PE}_{i}\right)$
power: $\mathrm{P}=\frac{E}{t}=\mathrm{Fv}$

Ch.6: momentum conservation and collisions

momentum: $\mathrm{p}=\mathrm{mv}$, impulse $=\mathrm{F} \Delta \mathrm{t}$
impulse-momentum theorem: F $\Delta \mathrm{t}=\Delta \mathrm{p}=\mathrm{mv}_{f}-\mathrm{mv}_{i}$
conservation of momentum in collisions: $\Sigma(\mathrm{mv})_{\text {initial }}=\Sigma(\mathrm{mv})_{\text {final }}$

Ch.7: rotational motion

rotational equation 1: $\omega=\omega_{0}+\alpha$ t
rotational equation 2: $\Delta \Theta=\omega_{0} \mathrm{t}+\frac{1}{2} \alpha \mathrm{t}^{2}$
rotational equation 3: $\omega^{2}=\omega_{0}^{2}+2 \alpha \Delta \Theta$
tangential velocity: $\mathrm{v}_{t}=\omega \mathrm{r}$
tangential acceleration: $\mathrm{a}_{t}=\alpha \mathrm{r}$
centripetal acceleration: $\mathrm{a}_{c}=\frac{v^{2}}{r}=\omega^{2} \mathrm{r}$
total linear acceleration: $\left.\mathrm{a}=\sqrt{(} a_{r}^{2}+a_{t}^{2}\right)$
centripetal force: $\mathrm{F}_{c}=\mathrm{m} \frac{v^{2}}{r}$

Ch.8: rotational equilibrium and dynamics

rotational kinetic energy: $\mathrm{KE}_{r}=\frac{1}{2} \mathrm{I} \omega^{2}$
moment of inertia: $\mathrm{I}=\Sigma \mathrm{m}_{i} \mathrm{r}_{i}^{2}$
torque: $\tau=\mathrm{Fd}(\mathrm{d}=\mathrm{r} \sin \theta)$, torque: $\tau=\mathrm{I} \alpha$
equilibrium conditions $\rightarrow \Sigma \mathrm{F}_{x}=0, \Sigma \mathrm{~F}_{y}=0, \Sigma \tau=0$
angular momentum: $\mathrm{L}=\mathrm{I} \omega$
angular momentum conservation: $\mathrm{I}_{i} \omega_{i}=\mathrm{I}_{f} \omega_{f}$

Ch.9: solids and liquids

tensile strain and shear strain: $\frac{F}{A}=\mathrm{Y} \frac{\Delta L}{L_{0}}, \frac{F}{A}=\mathrm{S} \frac{\Delta x}{h}$
density: $\rho=\frac{m}{V}$, pressure: $\mathrm{P}=\frac{F}{A}$
buoyant force: $\mathrm{B}=\rho_{f} \mathrm{~V}_{f} \mathrm{~g}$
pressure variation with depth : $\mathrm{P}=\mathrm{P}_{0}+\rho \mathrm{gh}$
pressure variation with velocity : $\mathrm{P}=\mathrm{P}_{0}+\frac{1}{2} \rho \mathrm{v}^{2}$
Bernoulli's equation: $\mathrm{P}+\rho \mathrm{g} \mathrm{y}+\frac{1}{2} \rho \mathrm{v}^{2}=\mathrm{constant}$ fluid in motion: $\mathrm{A}_{1} \mathrm{v}_{1}=\mathrm{A}_{2} \mathrm{v}_{2}$

Ch.10: thermal physics

Celsius to Fahrenheit conversion: $\mathrm{T}_{F}=\frac{9}{5} \mathrm{~T}_{C}+32$
thermal expansion: $\Delta L=\alpha L_{0} \Delta \mathrm{~T}$
$P V=n R T$ (ideal gas law)
Ch.11: heat
heat energy: $\mathrm{Q}=\mathrm{m} \mathrm{c} \Delta \mathrm{T}(\mathrm{c}=$ specific heat $)$
latent heat: $\mathrm{Q}= \pm \mathrm{mL}(\mathrm{L}=$ latent heat $)$
calorimetry: $Q_{\text {cold }}=-Q_{\text {hot }}$

Ch.12: laws of thermodynamics

change in internal energy: $\Delta \mathrm{U}=\mathrm{Q}+\mathrm{W}$
work done on a gas in isobaric process: $\mathrm{W}=-\mathrm{P} \Delta \mathrm{V}$
thermal efficiency of heat engine: $\mathrm{e}=\frac{W}{Q_{h}}=1-\frac{Q_{c}}{Q_{h}}$
thermal efficiency of Carnot engine: $\mathrm{e}_{c}=1-\frac{T_{c}}{T_{h}}$
entropy: $\Delta \mathrm{S}=\frac{\Delta Q}{T}$

Ch.13: vibrations and waves

spring force: $\mathrm{F}_{s}=-\mathrm{kx}$
elastic potential energy: $\mathrm{PE}_{s}=\frac{1}{2} \mathrm{k} \mathrm{x}{ }^{2}$
velocity as a function of position: $\left.\mathrm{v}= \pm \sqrt{\left(\frac{k}{m}\right.}\left(A^{2}-x^{2}\right)\right)$
period: $\mathrm{T}=2 \pi / \omega$
angular frequency: $\omega=2 \pi \mathrm{f}, \omega=\sqrt{\frac{k}{m}}$
position in simple harmonic motion: $\mathrm{x}=\mathrm{A} \cos (\omega \mathrm{t})$
velocity in simple harmonic motion: $\mathrm{v}=-\mathrm{A} \omega \sin (\omega \mathrm{t})$
pendulum period: $\mathrm{T}=2 \pi \sqrt{\frac{L}{g}}$
wave velocity: $\mathrm{v}=\mathrm{f} \lambda$

Ch.14: sound

speed of sound: $\mathrm{v}=331 \sqrt{1+\frac{T}{273}}$
doppler effect: $\mathrm{f}_{o b}=\mathrm{f}_{s} \frac{v+v_{o b}}{v-v_{s}}$
intensity: $\mathrm{I}=\frac{\text { power }}{\text { area }}=\frac{P}{A}$
intensity level: $\beta=10 \log \left(\frac{I}{I_{0}}\right), I_{0}=1.0 \times 10^{-12} \mathrm{~W} / \mathrm{m}^{2}$
conversion factors and constants:
gravitational acceleration $\mathrm{a}=-\mathrm{g}=-9.8\left[\mathrm{~m} / \mathrm{s}^{2}\right]$
$1 \mathrm{~atm}=1.013^{*} 10^{5} \mathrm{~Pa}$
0 degree Celsius $=273 \mathrm{~K}$
gas constant $\mathrm{R}=8.31451[\mathrm{~J} / \mathrm{mol} \mathrm{K}]$
volume of a sphere $\mathrm{V}=\frac{4}{3} \pi \mathrm{r}^{3}$
1 gallon $=3.786 \mathrm{l}=0.003786 \mathrm{~m}^{3}$
$1 \mathrm{rot}=1 \mathrm{rev}=6.28 \mathrm{rad}=360$ degrees
$1 \mathrm{rpm}=1$ rotation per minute
density of water $=1000 \mathrm{~kg} / \mathrm{m}^{3}$

