Physics 302K Formula Sheet

Ch.1: sin=opposite/hypotenuse, cos=adjacent/hypotenuse, tan=opposite/adjacent

Ch.2: one dimensional motion

velocity $v = \frac{\Delta x}{\Delta t}$, acceleration $a = \frac{\Delta v}{\Delta t}$ kinematic equation $1 \rightarrow v = v_0 + at$ kinematic equation $2 \rightarrow v^2 = v_0^2 + 2a\Delta x$ kinematic equation $3 \rightarrow \Delta x = v_0 t + \frac{1}{2}at^2$

Ch.3: projectile motion

kinematic equation $1 \rightarrow \Delta x = v_{x0}t$ kinematic equation $2 \rightarrow v_y = v_{y0}$ - gt kinematic equation $3 \rightarrow v_y^2 = v_{y0}^2$ - 2g Δy kinematic equation $4 \rightarrow \Delta y = v_{y0}t$ - $\frac{1}{2}gt^2$

Ch.4: laws of motion

Force F = ma, Weight W = mgequilibrium conditions $\rightarrow \Sigma F_x=0, \Sigma F_y=0$ non-equilibrium conditions $\rightarrow \Sigma F_x=ma_x, \Sigma F_y=ma_y$ static friction force $f_s \leq \mu_s n$, kinetic friction force $f_k = \mu_k n$

Ch.5: work and energy

work: W = F $\cos\theta \Delta x$, work θ =0: W = F Δx potential energy: PE = mgy elastic potential energy stored in a spring: PE_s = $\frac{1}{2}kx^2$ kinetic energy: KE = $\frac{1}{2}mv^2$ work energy theorem: W_{net} = KE_f - KE_i energy conservation: KE_i + PE_i = KE_f + PE_f non-conservative work: W_{nc} = (KE_f + PE_f) - (KE_i + PE_i) power: P = $\frac{E}{t}$ = Fv

Ch.6: momentum conservation and collisions

momentum: p = mv, impulse = F Δt impulse-momentum theorem: F $\Delta t = \Delta p = mv_f - mv_i$ conservation of momentum in collisions: $\Sigma(mv)_{initial} = \Sigma(mv)_{final}$

Ch.7: rotational motion

rotational equation 1: $\omega = \omega_0 + \alpha t$ rotational equation 2: $\Delta \Theta = \omega_0 t + \frac{1}{2} \alpha t^2$ rotational equation 3: $\omega^2 = \omega_0^2 + 2 \alpha \Delta \Theta$ tangential velocity: $v_t = \omega r$ tangential acceleration: $a_t = \alpha r$ centripetal acceleration: $a_c = \frac{v^2}{r} = \omega^2 r$ total linear acceleration: $a = \sqrt{(a_r^2 + a_t^2)}$ centripetal force: $F_c = m \frac{v^2}{r}$

Ch.8: rotational equilibrium and dynamics

rotational kinetic energy: $\text{KE}_r = \frac{1}{2}\text{I}\ \omega^2$ moment of inertia: $\text{I} = \Sigma \text{ m}_i r_i^2$ torque: $\tau = \text{Fd} (\text{d}=\text{r} \sin \theta)$, torque: $\tau = \text{I}\ \alpha$ equilibrium conditions $\rightarrow \Sigma \text{ F}_x=0, \Sigma \text{ F}_y=0, \Sigma \tau=0$ angular momentum: $\text{L} = \text{I}\ \omega$ angular momentum conservation: $\text{I}_i\omega_i = \text{I}_f\omega_f$

Ch.9: solids and liquids

tensile strain and shear strain: $\frac{F}{A} = Y \frac{\Delta L}{L_0}, \frac{F}{A} = S \frac{\Delta x}{h}$ density: $\rho = \frac{m}{V}$, pressure: $P = \frac{F}{A}$ buoyant force: $B = \rho_f V_f g$ pressure variation with depth : $P = P_0 + \rho g h$ pressure variation with velocity : $P = P_0 + \frac{1}{2} \rho v^2$ Bernoulli's equation: $P + \rho g y + \frac{1}{2} \rho v^2 = \text{constant}$ fluid in motion: $A_1 v_1 = A_2 v_2$

Ch.10: thermal physics

Celsius to Fahrenheit conversion: $T_F = \frac{9}{5}T_C + 32$ thermal expansion: $\Delta L = \alpha L_0 \Delta T$ PV = nRT (ideal gas law)

Ch.11: heat

heat energy: $Q = m c \Delta T$ (c = specific heat) latent heat: $Q = \pm m L$ (L = latent heat) calorimetry: $Q_{cold} = -Q_{hot}$

Ch.12: laws of thermodynamics

change in internal energy: $\Delta U = Q + W$ work done on a gas in isobaric process: $W = -P \Delta V$ thermal efficiency of heat engine: $e = \frac{W}{Q_h} = 1 - \frac{Q_c}{Q_h}$ thermal efficiency of Carnot engine: $e_c = 1 - \frac{T_c}{T_h}$ entropy: $\Delta S = \frac{\Delta Q}{T}$

Ch.13: vibrations and waves

spring force: $F_s = -kx$ elastic potential energy: $PE_s = \frac{1}{2} k x^2$ velocity as a function of position: $v = \pm \sqrt{(\frac{k}{m}(A^2 - x^2))}$ period: $T = 2\pi/\omega$ angular frequency: $\omega = 2\pi f$, $\omega = \sqrt{\frac{k}{m}}$ position in simple harmonic motion: $x = A \cos(\omega t)$ velocity in simple harmonic motion: $v = -A \omega \sin(\omega t)$ pendulum period: $T = 2 \pi \sqrt{\frac{L}{g}}$ wave velocity: $v = f \lambda$

Ch.14: sound

speed of sound: $v = 331 \sqrt{1 + \frac{T}{273}}$ doppler effect: $f_{ob} = f_s \frac{v + v_{ob}}{v - v_s}$ intensity: $I = \frac{power}{area} = \frac{P}{A}$ intensity level: $\beta = 10 \log{(\frac{I}{I_0})}, I_0 = 1.0 \times 10^{-12} W/m^2$

conversion factors and constants:

gravitational acceleration $a = -g = -9.8 \text{ [m/s^2]}$ 1 atm = 1.013*10⁵ Pa 0 degree Celsius = 273 K gas constant R = 8.31451 [J/mol K] volume of a sphere V = $\frac{4}{3} \pi r^3$ 1 gallon = 3.786 l = 0.003786 m³ 1 rot = 1 rev = 6.28 rad = 360 degrees 1 rpm = 1 rotation per minute density of water = 1000 kg/m³